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1. Introduction

The pure spinor formalism of superstrings [1] and the Green-Schwarz (GS) formalism [2]

are synoptical, in that both are based on the embedding of the superstring world-sheet into

the target superspace and have manifest supersymmetry. The deep relation between the

two approaches is discussed in [3 – 5]. The pure spinor approach has the great advantage

over the GS one to allow for a consistent and covariant quantization of the superstring.

The GS approach cannot be quantized covariantly due to its peculiar κ-symmetry [6] which

cannot be gauge fixed in a Lorentz covariant way. In the pure spinor formulation the κ-

symmetry is replaced by a symmetry generated by the BRST charge Q =
∮

λαdα where

λα is a pure spinor.

One of the main applications of the pure spinor formalism is the construction of string

actions on supersymmetric backgrounds [7, 8, 3], including those with Ramond-Ramond

fields like anti de Sitter space-times [9]. A common feature of both approaches in curved

backgrounds is that, in the associated σ-models, the requirement of invariance and nilpo-

tence under κ-symmetry in one case [10] and under the BRST symmetry in the other

case [7, 8], implies, to zero order in α′, constraints for the background torsion and curva-

tures that force the background fields to be on shell.

A relevant question in this context is to understand and compute the corrections to

these constraints to higher order in α′.

There are two ways to study these corrections for the GS superstring. The first method

computes the relevant β-functions and imposes that they vanish to reach conformal invari-

ance at the quantum level. The vanishing of the β-functions determines the corrections

to the background field equations [11]. The second method is cohomological in nature:

it classifies and then computes the anomalies of the BRST κ-symmetry. These anomalies

determine the α′ corrections of the torsion and curvatures constraints [12 – 14]. The equiv-

alence of the two methods becomes clear if one notices that the square of the κ-symmetry
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transformations produces a Weyl-Lorentz (i.e. conformal) world-sheet transformation. It

is remarkable that correction of order n in α′ in the conformal approach appear at order

(n − 1) in the cohomological approach.

Since the pure spinor formulation describes a critical string, one expects that the

conformal invariance is preserved on shell also at the quantum level and the β-functions

vanish [15, 16]. However, as discussed in [7], the vanishing of the β-function is not sufficient

to determine the corrections of the field equations. It turns out that the holomorphicity of

the BRST current and the nilpotence of the BRST charge are also needed. Equivalently

one can apply the cohomological method and study the anomalies of the BRST symmetry

generated by Q.

For the heterotic string, both in the GS and in the pure spinor approaches, the con-

straints that arise at zero order in α′ describe a model where the B-field is decoupled from

the gauge sector. Then, at first order in α′, one expects a correction related to the gauge

and Lorentz Chern-Simons three-form, in order to cancel the gauge and Lorentz anomalies

by the standard Green-Schwarz mechanism [17].

In the GS formulation, this correction was indeed found, as an anomaly of the κ-

symmetry, for the Yang-Mills Chern-Simons form in [12] and for the full (gauge and

Lorentz) Chern-Simons form in [13]. The coefficients of this anomaly has been explicitly

computed in [14], in agreement with the GS anomaly cancelation mechanism. One should

notice that in order to implement the consistency condition for the Lorentz anomaly, a

theorem to obtain a solutions of the SUGRA-SYM constraints in presence of the gauge

and Lorentz Chern-Simons forms has to be used [18 – 20].1

In this paper we consider the problem of determining the α′ corrections of the heterotic

string σ-model, in the framework of the pure spinor approach, looking for the BRST

anomalies at the cohomological level. In particular we shall obtain the full expression of

the anomaly related to the gauge and Lorentz Chern-Simons three-form, which arises at

first order in α′.

In the next section we will review the pure spinor construction for the heterotic string

in a generic SYM/SUGRA background. In section 3 we determine the form in which the

theorem of [18] is implemented with the constraints for background fields of [7]. In section 4

we propose a one-loop anomaly for the BRST symmetry and show that it is cohomologically

non trivial. Finally, we end with a conclusion section. Before finish this section, we shall

introduce our notation.

1.1 Notation

Our normalization for n-(super)forms is

F =
1

n!
dZM1 . . . dZMnFMn...M1

=
1

n!
EA1 . . . EAnFAn...A1

, (1.1)

where ZM are the ten dimensional N = 1 superspace coordinates, EA = dZMEM
A are

the supervielbeins. We use latin letters for vector-like indices, greek letters for spinor-like

1A procedure to obtain corrections to SUGRA/SYM system order by order in α
′ was done in [21].

Unfortunately, this approach, as developed in [21], leads to inconsistencies (see [22]).
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indices and Capital letters for both. Letters from the beginning of the alphabet denote flat

(Lorentz) indices and letters from the middle of alphabet are for curved ones. Once a set

of supervielbeins is specified, an n superform can be decomposed as

F =
∑

Fp,q, (1.2)

where Fp,q denote the component of F with p vector-like vielbeins and q = n−p spinor-like

vielbeins.

2. The heterotic string action

The sigma model action for the heterotic string in a SUGRA/SYM background in the pure

spinor formalism is given by [7]

S =
1

α′

∫
d2z

[
1

2
ΠaΠ

b
ηab +

1

2
ΠAΠ

B
BBA + ωα∇λα (2.1)

+dα(Π
α

+ J
I
W α

I ) + ΠAAIAJ
I
+ λαωβJ

I
UIα

β

]
+ SJ + SFT ,

where (ΠA,Π
A
) = (∂ZMEM

A, ∂ZMEM
A), λα is a pure spinor and ωα is its conjugate

momentum. The covariant derivative for the pure spinor λα is given by ∇λα = ∂λα +

λβ∂ZMΩMβ
α, where ΩMα

β is the connection for the structure group and it has the form

ΩMα
β = Ω

(s)
M δα

β + 1
4ΩMab(γ

ab)α
β. The world-sheet field dα has conformal weight (1, 0) and

plays the role of generating translations in superspace. J
I

(I = 1, . . . , 496), with conformal

weight (0, 1), are the currents of the gauge group, SO(32) or E8 ×E8 and dZMAIM is the

gauge group connection. SJ is the free action for the heterotic fermions. The superfield

W α
I has the gaugino as the lowest component and UIα

β contains the field strength for the

gauge boson in its lowest component. Finally, SFT is the Fradkin-Tseytlin term given by

SFT =

∫
d2z r(2)Φ, (2.2)

where r(2) is the world-sheet curvature and Φ is the dilaton superfield. Although the

Fradkin-Tseytlin term breaks the classical conformal invariance of the action (2.1), it helps

to restore it at the quantum level as it was shown in [15] in the one-loop case. Note that the

dilaton superfield is related to the Weyl part of the curvature connection as ∇αΦ = 4Ω
(s)
α .

Besides the action (2.1) being classically invariant under conformal transformations, it

is invariant under gauge transformations and a pair of Lorentz transformations acting on

the background fields. These two Lorentz transformations act independently on the bosonic

local indices, e.g. δΠa = ΠbΣb
a, and on the fermionic local indices, e.g. δdα = −Σα

βdβ .

Both Lorentz transformations can be identified as it is done in [7].

The pure spinor superstring has a very important symmetry, it is invariant under the

BRST-like pure spinor transformation [1] generated by the pure spinor BRST charge Q =∮
λαdα. As it was stressed in [7], one must demand that also the action (2.1) is invariant

under this symmetry. By demanding nilpotence and world-sheet time conservation of Q,
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the action (2.1) turns out to be invariant if the background superfields satisfy suitable

constraints which determine the SUGRA/SYM equations of motion for them. Nilpotence

is achieved by demanding

λαλβTαβ
A = λαλβHαβA = λαλβFIαβ = λαλβλγRαβγ

δ = 0, (2.3)

where TA is the torsion 2-form, H = dB, F is the field-strength two form and Rα
β is the

curvature two form. We use the notation of [15]. The charge conservation can be obtained

by determining the equations of motion of (2.1) and then imposing ∂(λαdα) = 0 [7] or by

demanding invariance of (2.1) under the BRST transformations [8]. In this case, the action

transforms as

QS =
1

α′

∫
d2z

[
1

2
λαΠaΠ

b
(Tα(ab)+Hbaα)+

1

2
λαΠβΠ

a
(Hβαa − Tβαa) + λαdβΠ

a
Taα

β

−λαλβdγΠ
a
Raαβ

γ + λαΠaJ
I
(

1

2
(Hαβa + Tαβa)W

β
I − FIaα

)

+λαΠβJ
I
(

1

2
HαβγW

γ
I − FIαβ

)
+ λαdβJ

I
(UIα

β − W
γ
I Tγα

β −∇αW
β
I )

+λαλβωγ(∇αUIα
γ + W δ

I Rδαβ
γ)

]
. (2.4)

As it was shown in [7], the nilpotence constraints (2.3) and the vanishing of (2.4) allow to

write the following constraints for the torsion and curvature components

Taα
β = Tαβ

γ = 0, Tαβ
a = γa

αβ , Tαa
b = 2(γa

b)α
βΩβ, (2.5)

Hαβγ = Haβγ − (γa)βγ = 0, (2.6)

FIαβ = 0, (2.7)

where γa
αβ and (γa)αβ denote the usual Pauli matrices, i.e. the off-diagonal blocks of the

Dirac matrices, so that they are symmetric in (α, β). Besides, Bianchi identities imply

that the torsion component Tabc = ηcdTab
d is completely antisymmetric [15]. Note that the

torsion component Tαβ
γ can be set to zero only after the use of the ‘shift’ symmetry of [7].

Note that in (2.4), the field equation

Π
α

+ J
I
W α

I = 0, (2.8)

which follows from varying the action (2.1) respect to the world-sheet field dα, has been

used.

Finally one must require that the action (2.1) is also invariant under the “ω-symmetry”

δωα = (γaλ)αΛa, where Λa are local parameters, which implies that

UIα
β = UIδα

β + UIab(γ
ab)α

β.

A natural question to be addressed at this point is the quantum preservation of the

symmetries of (2.1). In particular, the possibility of finding α′ corrections to the constraints
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of (2.3) and those from the vanishing of (2.4). Let us first discuss the gauge and Lorentz

anomalies.2

The anomaly for the local symmetries is

δΓeff =

∫
d2z

[
1

2
(∂AI − ∂AI)εI +

1

4
(∂Ωab − ∂Ωab)Σ

ab

]
, (2.9)

where Γeff is the effective action (i.e. the generating functional of 1PI vertex functions), εI

and Σab are the parameters of the gauge and the Lorentz transformations respectively and

AI = ∂ZMAIM , AI = ∂ZMAIM ,Ωab = ∂ZMΩMab,Ωab = ∂ZMΩMab. It is also possible the

presence of terms like ∫
d2z dαW α

I ∂εI ,

which can be eliminated by adding suitable counterterms. There is also a potential anomaly

associated to Ω(s). However, this contribution vanishes because Ω(s) appears in the combi-

nation Ω(s) + J
I
UI which is zero on-shell [15].

Since the quantum theory cannot be anomalous under a local symmetry, the expres-

sion (2.9) must be canceled by the standard Green-Schwarz mechanism [17]. It is done by

allowing the B two-form superfield not to be inert under gauge and Lorentz transforma-

tions. It has to transform as

δB = −α′

(
dAIεI +

1

2
dΩabΣ

ab

)
. (2.10)

In order to assure gauge and Lorentz invariance of the B field strength H one must

define it as

H = dB −
α′

2
ω(CS), (2.11)

where ω(CS) is the Chern-Simons three from given by

ω(CS) = tr(AdA −
2

3
A3) + ΩabdΩab −

2

3
Ωa

bΩb
cΩc

a, (2.12)

and satisfying

dH = tr(FF ) + RabRab. (2.13)

Note that H in (2.11) is defined up to a gauge and Lorentz invariant three-form.

The classical constraints coming from (2.3) and the vanishing of (2.4) lead to dH = 0

and therefore have to be corrected. These corrections arise as anomalies of the BRST

symmetry generated by the nilpotent charge Q, that is, if we define

QΓeff = α′A, (2.14)

A is a non trivial cocycle of the cohomology of Q, in the space of local functionals of ghost

number 1. Then from the previous discussion it is expected that A will contain a term

A =
1

2

∫
d2z λαΠAΠ

B
ω

(CS)
BAα + · · · , (2.15)

2The following paragraph is based on discussions with N. Berkovits and V. Pershin.
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which modifies the definition of H since the variation of the term involving B in the

action (2.1) is proportional to
∫

d2z λαΠAΠ
B
(dB)BAα.

In the next sections we will determine the complete form of (2.15) by studying the condi-

tions coming from QA = 0.

3. The cohomology and an useful theorem

Let us start from (2.15) and compute its BRST variation. Any variation of the Chern-

Simons term showed in (2.15) is

δ

∫
d2z λαΠAΠ

B
ω

(CS)
BAα =

∫
d2z δZMEM

CλβΠAΠ
B

(dω(CS))BAβC ,

because ω(CS) is a three-form. Now we recall the BRST variation for ZM to be [8]

δBRST ZM = QZM = λαEα
M ,

then we obtain

QA =

∫
d2z

1

2
λαλβΠAΠ

B
(dω(CS))BAαβ + · · · (3.1)

=

∫
d2z λαλβΠAΠ

B
(

FIFI +
1

2
RabRab

)

BAαβ

+ · · · ,

where we have used dω(CS) = tr(FF ) + RabRab. We will fix the · · · terms to make this

expression to vanish.

It follows from the constraint FIαβ = 0, that the 4-superform FIFI vanishes in the

sectors (0, 4) and (1, 3) (i.e. in the sectors with 4 or 3 spinor-like local indices ). Moreover

in the sector (2, 2) (FIFI)baαβ has the following structure

(FIFI)baαβ = (γ[a)αγ(γb])βδW
γ
I W δ

I . (3.2)

As it will be shown in section 4, this structure is essential to compute the anomaly for the

gauge part in (3.1) . The curvature part in (3.1) could be treated similarly if the index

structure were the same. Unfortunately, it is not the case with the constraints of (2.3)

and (2.4). However there exists the following result. It was shown in [13, 14, 19] that with

a different set of torsion constraints [18] (the gauge part has the same constraints) that

R′abR′
ab = dX ′ + K, (3.3)

where the three form X ′ and the four form K are Lorentz invariant. They were determined

in [19]. The main property in (3.3) is that the four form K vanishes in the sectors (0, 4)

and (1, 3) and that in the sector (2, 2) has the same structure than (FIFI)abαβ , that is

Kabαβ = (γ[a)αγ(γb])βδK
γδ,

– 6 –



J
H
E
P
0
9
(
2
0
0
7
)
0
1
6

with Kγδ = −Kδγ . This property will be crucial to determine also the Lorentz part in the

BRST anomaly.

In order to use this result we should relate the Berkovits-Howe constraints to the ones

of [19]. Now it will be shown that there exists a redefinition of fields which makes the job.

We redefine the vielbein one-form as

E′a = e−
1

3
ΦEa, E′α = e−

1

6
Φ

(
Eα +

1

3
Eaγαβ

a ∇βΦ

)
, (3.4)

and the components of the Lorentz superspace connection one form as

Ω′
ab = Ωab + Λab, (3.5)

where

Λab =
1

3
E[a∇b]Φ −

1

12
Ecγ

αβ
cab∇α∇βΦ −

1

6
Eα(γab)α

β∇βΦ. (3.6)

In components, these transformations imply the following torsion constraints

T ′
αβ

a = γa
αβ , T ′

αβ
γ = T ′

αa
b = 0, T ′

aα
β =

1

3
e

1

6
Φ(γaγ

bcd)α
βτbcd, (3.7)

where

τbcd =
1

96
γ

γδ
bcd

(
∇γ∇δΦ +

4

3
(∇γΦ)(∇δΦ)

)
,

which correspond to a set of constraints used in [19] to show the theorem (3.3).

Now we can use (3.5) to rewrite (3.3) for the Berkovits-Howe constraints. In fact,

RabRab = R′abR′
ab − d(2RabΛ

ab + Λab∇Λab), (3.8)

Therefore, we have shown that

RabRab = dX + K, (3.9)

where

X = X ′ − 2RabΛ
ab − Λab∇Λab.

4. Quantum BRST invariance

From the discussion of the previous section it is expected that the anomaly is

A =
1

2

∫
d2z λαΠAΠ

B
ω̂BAα + · · · , (4.1)

where

ω̂ = ω(CS) − X, (4.2)

and

dω̂ = L,

where the closed 4-superform L is

L = 2FIFI + RabR
ab − dX = 2FIFI + K. (4.3)

– 7 –
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Note that L vanishes in the sectors (0, 4) and (1, 3) and in the sector (2, 2) its flat compo-

nents have the following structure

Lbaαβ = (γ[a)αγ(γb])βδL
γδ,

where

Lαβ = Kαβ + W α
I W

β
I . (4.4)

Moreover Lγδ belongs to the 120 representation of the Lorentz group and therefore can be

written as

Lβγ = γ
βγ
abcL

abc. (4.5)

The BRST variation of A will be of the form

QA =
1

2

∫
d2z λαλβΠAΠ

B
LBAαβ + · · · . (4.6)

In the case of the GS heterotic string the analogous of (4.1) (without · · ·) is the all

story. Indeed in this case, the anomaly and its variation are still given by (4.1) and (4.6)

but with λα replaced by δκγΠcγ
γα
c . With this substitution (4.6) (without · · ·) vanishes

(modulo the Virasoro constraint) and (4.1) (without · · ·) is the full consistency anomaly.

For the pure spinor string one must supplement the first term in the r.h.s. of (4.1) with

further terms (represented by the · · · ) in order to recover a consistent anomaly. We shall

show that the pure spinor BRST anomaly is

A =
1

2

∫
d2z [λαΠAΠ

B
ω̂BAα − λαdβΠ

a
(γa)αγLβγ − λαλβωγΠ

a
(γa)βρ∇αLγρ], (4.7)

For that we must compute the BRST variation of A and show that QA vanishes. The

relevant BRST transformations are [8]

QΠA = δA
α∇λα − λαΠBTBα

A, Qλα = 0, (4.8)

Qdα = λβΠa(γa)βα + λβλγωδRαβγ
δ,

and [1, 23]

Qωα = dγ(δγ
α −Kγ

α), (4.9)

where

Kγ
α =

1

2
(γaY )γ(λγa)α

and Yα = vα

(vλ) so that (Y λ) = 1, vα being a constant spinor . Note that although we have

added a non covariant object, namely K, the final result is covariant. Now it will be shown

that the anomaly (2.15) is invariant under the symmetry transformation δωα = (γaλ)αΛa.

Then, the term dγK
γ

α in (4.9) does not contributes and (4.9) can be replaced by Qωα = dα.

To prove this consider first the gauge part in (2.15). After using ∇αW
β
I = UIα

γ , we obtain

∇α(W β
I W

γ
I ) = UIδ

[β
α W

γ]
I +

1

4
UI

ab(γab)α
[βW

γ]
I ,

– 8 –
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then plugging this into the variation under δωα = (γaλ)αΛa we find that A varies as the

integral of

ΛbΠ
a
λαλβλγ(γb)γσ(γa)βρ

[
UIδ

[σ
α W

ρ]
I +

1

4
(γcd)α

[σW
ρ]
I U cd

I

]

= ΛbΠ
a
λαλβλγ

[
(γ[a)αβ(γb])γρUIW

ρ
I −

1

4
(γcdγ[a)αβ(γb])γρU

cd
I W

ρ
I

]
,

which vanishes because the pure spinor condition.

Similarly, for the K-part we need to use the result [19] and the mappings (3.4), (3.5).

We first define Kβγ = γ
βγ
abcK

abc to obtain

∇αKβγ = (γabc)βγ∇′
αKabc + 2Ω(s)

α Kβγ − (γabc)βγ(γa
d)α

ρKbcdΩ
(s)
ρ ,

where

∇′
αKabc = (γ[a)αβKbc]

β,

as it was shown in [19]. Plugging this into the variation of (2.15) under the pure spinor

gauge transformation, we obtain that the variation of (2.15) becomes the integral of

ΛbΠ
a
λαλβλγ(γabcde)(αβγc

γ)δ(K
deδ + γ

δρ
f KdefΩ(s)

ρ ),

which vanishes because of the identity

(γabcde)(αβγc
γ)ρ = −

1

2
γc
(αβ(γabdeγc)γ)ρ,

and the pure spinor constraint.

Now let us compute QA. It is not difficult to obtain, after using (4.6), that

QA =
1

2

∫
d2z

(
λαλβdγΠ

a
[−Taα

β(γb)βρL
γρ + ∇α((γa)βρL

γρ) − (γa)αρ∇αLγρ] (4.10)

+λαλβλγωδΠ
a
[Taα

b(γb)βρ∇γLδρ −∇α((γa)βρ∇γLδρ) + Rραβ
δ(γa)γσLρσ]

)
.

If note that ∇α(γa)βγ = −2Ω
(s)
α (γa)βγ , the Fierz identity for the gamma matrices and

the pure spinor condition, then the first line in (4.10) vanishes and we are left with the

expression from the last line that contains

λαλβλγ [Rραβ
δLρσ + ∇α∇βLδσ ](γa)γσ. (4.11)

If we symmetrize in (αβ), use

{∇α,∇β}L
δσ = −Tαβ

A∇ALδσ + LρσRαβρ
δ + LδρRαβρ

σ,

and the Bianchi identity R(αβρ)
δ = 0, then we obtain that (4.11) is proportional to

λαλβλγRαβρ
σ(γa)γσ. (4.12)

But

Rαβρ
σ = δσ

ρ Rαβ +
1

4
(γbc)ρ

σRαβbc.

– 9 –
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If we plug this expression into (4.12), we see that Rαβ does not contribute because it

contains a term like γc
αβ . Analogously Rαβbc is expressed in terms of a term along γd

αβ ,

which again does not contribute, and a term along γbcdef . We note that this contribution

also vanishes because of the identity

(γaγ
bc)ρ(α(γbcdef )βγ) = (γaγ

b)ρ
σγc

σ(α(γbcdef )βγ) =
1

2
(γaγ

b)ρ
σ(γcγbdef )σ(αγc

βγ).

Therefore we have obtained

QA = 0. (4.13)

The anomaly A in (2.15) can be absorbed by relaxing the torsion and curvature con-

straints that follow from (2.3) and the vanishing of (2.4) and by modifying them. In fact

we can impose

QS − α′A =
1

α′

∫
d2z

[
1

2
λαΠaΠ

b
(Tα(ab) + Ĥbaα) +

1

2
λαΠβΠ

a
(Ĥβαa − Tβαa) (4.14)

+λαΠaJ
I
(

1

2
(Ĥαβa + Tαβa)W

β
I − FIaα

)
− λαΠβJ

I
(W γ

I Ĥγαβ + FIαβ)

+λαdβJ
I
(UIα

β − W
γ
I Tγα

β −∇αW
β
I ) + λαλβωγ(∇αUIα

γ + W δ
I Rδαβ

γ)

+λαdβΠ
a
(

Taα
β −

α′

2
(γa)αγLβγ

)
− λαλβΠ

a
(

Raαβ
γ −

α′

2
(γa)δ(α∇β)L

γδ

)]
= 0,

where we have defined

Ĥ = dB −
α′

2
ω̂. (4.15)

Equation (4.14) means that the structure of the anomaly is such that a violation of

the BRST invariance of the classical action S, represented by a change of the constraints,

can be chosen so that it cancels the anomaly, as in the GS mechanism.

It follows from (4.14) that the constraints

Tαβ
γ = 0, Tαβ

a = γa
αβ , Tαa

b = 2(γa
b)α

βΩβ FIαβ = 0,

remain the same. Only the constraints (2.6) are changed in the sense that it is Ĥ and not

H that satisfies these constraints. All the other components of the torsion and curvatures

follow from the Bianchi identities. In particular

Taα
β =

α′

2
(γa)αγLβγ ,

and

λαλβRaαβ
γ = α′λαλβ(γa)δα∇βLγδ,

in agreement of the last two terms of (4.14).

We expect that the corrections we have found will induce a correction in the nilpotence

of the BRST charge, at the one-loop level, that consists in replacing H with Ĥ in the second

constraint in (2.3).
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5. Concluding remarks

In this paper we have obtained the corrections of order α′ for the constraints of the σ-

model of the pure spinor heterotic string, that implement the GS anomaly cancelation

mechanism. They arise as anomalies of the BRST charge. In fact, having worked at a

cohomological level, we have obtained the general form of these corrections, which depends

on two unspecified constants: one in front of the gauge anomaly and one in front of the

Lorentz one. These constants are fixed as in (2.15) by requiring that the variations of

B under gauge and Lorentz transformations, induced by this BRST anomaly, cancel the

gauge and Lorentz anomalies (2.9), according to the GS mechanism. It could be interesting

to check these values of the constants by an explicit one loop calculation.

We have obtained our result in the framework of the set of constraints found in [7]

starting from (2.1). A redefinition of the supervielbeins and superconnections leads to a

different but equivalent set of constraints. Of course the redefinition changes the σ-model

action (2.1) but the new action is equally suited and gives rise to equivalent results. For

instance the redefinitions (3.4) and (3.5) lead to the action

S =
1

α′

∫
d2z

[
1

2
e

2

3
ΦΠaΠ

b
ηab +

1

2
ΠAΠ

B
BBA + ΠAAIAJ

I
+ ωα∇λα

+dα

(
Π

α
+ J

I
W α

I −
1

3
Π

a
γαβ

a ∇βΦ

)
+λαωβ

(
J

I
UIα

β+
1

4
Π

A
ΛA

ab(γab)α
β

)]

+SJ + SFT ,

where Λab is the one form (3.6) expressed in terms of E′A (in this equation the suffix “ ’ ”

is suppressed).

Notice that a change in the action S not only changes the constraints coming from

the vanishing of (2.4) but also induces changes in the definition of dα and therefore gives

rise to possible changes in the nilpotence motivated constraints (2.3). Also notice that

the anomaly A is defined modulo a trivial cocycle that amounts to a modification of the

action corresponding to an (α′-dependent) redefinition of supervielbeins, B-superform and

superconnections [24].

In [25, 24], (see also [26]) an interesting set of constraints is proposed. For this set,

the curvature Rab in the sector (0, 2) vanishes at the classical level (zero order in α′) and

the 3-superform X is of order α′ so that it does not contribute in Ĥ at first order in α′.

Then (4.15) looks as Ĥ = dB − α′

2 ω(CS) − α′2X.

As it was shown in [19], the explicit solution of the Bianchi identities in the presence

of the superform X leads to an unexpected and, at first sight, unpleasant feature: the

solution contains poles that represent spurious states of negative norm (poltergheists) at a

mass of the order κ
α′ where κ is the v.e.v. of the dilaton. The poltergheists are the signal

of a conflict between our requirements of supersymmetry, locality and unitarity (absence

of anomalies). However one should not worry of them. Indeed the spurious poles arise at

a very high mass in a region of energy where our perturbative expansion in α′ is clearly

unreliable. This is similar, after all, to what happens in the well-known low energy effective

actions of gravity with terms quadratic in the curvature, which also contain poltergheists.

– 11 –



J
H
E
P
0
9
(
2
0
0
7
)
0
1
6

Notice that in the set of constraints of [25, 24], X does not contribute at first order in α′

and therefore the spurious poles appear only at higher orders. Moreover the spurious states

can be decoupled at any finite order in α′, at the expense of locality, by solving recursively

the relevant equations, as discussed in [19].

As a last remark, let us notice that the cohomological method of this paper could be

used to search for anomalies and corrections of the constraints, for type II superstrings

and/or for heterotic strings at higher order in α′. In particular it should be interesting to

search for the anomaly at the order α′3 that corresponds to the celebrated “R4” term in

the action and would provide for the supersymmetrization of this term. Previous attempts

in this direction (for the heterotic GS string) are in [27]. Note that the complete R4 terms

for the type II superstrings were obtained recently in [28] by using tree-level scattering

amplitudes in the pure spinor formalism.
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